Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.17/1653
Título: Automatic Small Bowel Tumor Diagnosis by Using Multi-Scale Wavelet-Based Analysis in Wireless Capsule Endoscopy Images
Autor: Barbosa, D
Roupar, D
Ramos, J
Tavares, A
Lima, C
Palavras-chave: HSAC GAS
Endoscopia por Cápsula
Interpretação de Imagem Assistida por Computador
Neoplasias do Intestino
Modelos Estatísticos
Redes Neurais (Computação)
Replicação de Resultados
Sensibilidade e Especificidade
Gravação em Vídeo
Análise de Wavelet
Data: 2012
Editora: BioMed Central
Citação: Biomed Eng Online 2012 Jan 11; 11:3
Resumo: BACKGROUND: Wireless capsule endoscopy has been introduced as an innovative, non-invasive diagnostic technique for evaluation of the gastrointestinal tract, reaching places where conventional endoscopy is unable to. However, the output of this technique is an 8 hours video, whose analysis by the expert physician is very time consuming. Thus, a computer assisted diagnosis tool to help the physicians to evaluate CE exams faster and more accurately is an important technical challenge and an excellent economical opportunity. METHOD: The set of features proposed in this paper to code textural information is based on statistical modeling of second order textural measures extracted from co-occurrence matrices. To cope with both joint and marginal non-Gaussianity of second order textural measures, higher order moments are used. These statistical moments are taken from the two-dimensional color-scale feature space, where two different scales are considered. Second and higher order moments of textural measures are computed from the co-occurrence matrices computed from images synthesized by the inverse wavelet transform of the wavelet transform containing only the selected scales for the three color channels. The dimensionality of the data is reduced by using Principal Component Analysis. RESULTS: The proposed textural features are then used as the input of a classifier based on artificial neural networks. Classification performances of 93.1% specificity and 93.9% sensitivity are achieved on real data. These promising results open the path towards a deeper study regarding the applicability of this algorithm in computer aided diagnosis systems to assist physicians in their clinical practice.
Peer review: yes
URI: http://hdl.handle.net/10400.17/1653
Aparece nas colecções:GAS - Artigos

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Biomed Eng Online 2012_11_3.pdf2,81 MBAdobe PDFVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.