Perinatal bacterial infection: screening of vertical transmitted infections

Maria Teresa Neto MD, PhD

Neonatal Intensive Care Unit
Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, EPE, Faculdade de Ciências Médicas, Universidade Nova de Lisboa

Portugal
Hospital Dona Estefânia, Lisbon. Founded in 1860
Summary

- The rational for screening
- Why some countries have a non-screening policy
- Risk factors: a very useful complement of screening
- Conclusions
The burden of the problem

- Incidence of early-onset neonatal infection may vary between 0.98 to 1.2 or 1.3/1000 live births (Stoll B, Kuhn P, Lin C-Y).
- Lethality vary between 1.8% and 16% ((Kuhn, Stoll).
- Mortality depends on gestational age and isolates: 30% in newborns 25-28 weeks; 33% in E. Coli vs 9% for GBS (Barbara Stoll, 2011).
Early-onset bacterial neonatal infection

Caused by bacteria colonising the birth canal

- **Gram positive isolates:**
 - Group B *Streptococcus*
 - but also *Streptococcus pneumoniae*,
 - *Enterococcus*, *Listeria*

- **Gram negative isolates:**
 - Enterobacteriaceae - *E. coli* but also
 - *Proteus* spp, *Klebsiella* spp, *Haemophylus*

- Vergnano S et al. Arch *Dis Child Fetal Neonatal* Ed 2011 UK
- Kuhn P et al. Paediatric and Perinatal Epidemiol 2010 France
- Stoll BJ et al. *Pediatrics* 2011 – USA
- Al-Taier A et al. International J Infectious Dis 2011 Kuwait
Early-onset bacterial neonatal infection

- In the past Enterobacteriacea, mostly *E. coli*, were accepted as the most common cause of early-onset (EOS) neonatal bacterial infection.
- In the 1970s GBS infections emerged as the leading cause of EOS and meningitis (and *E. Coli* was forgotten?)
Portuguese National Prevalence Study
One day surveillance - 2010

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>Bacteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborns in the postnatal ward</td>
<td>567</td>
<td>Enterococcus faecalis – 1</td>
</tr>
<tr>
<td>Newborns in NICU</td>
<td>287</td>
<td>E. coli – 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GBS – 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptococcus pneumoniae – 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proteus mirabilis – 1</td>
</tr>
<tr>
<td>Patients >28 days</td>
<td>20270</td>
<td>E. coli - 320</td>
</tr>
<tr>
<td>Infections in patients admitted from home</td>
<td></td>
<td>GBS – 22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Listeria -2</td>
</tr>
</tbody>
</table>
Incidence of early-onset infection caused by GBS and *E. coli* /1000 births

- Kuhn P: GBS 0.75, E. coli 0.3
- Al-Taiar A: GBS 0.48, E. coli 0.27
- Stoll B: GBS 0.41, E. coli 0.28
- Lin C-Y: GBS 0.43, E. coli 0.7
- Vergnano S: GBS 0.50, E. coli 0.18
Sepsis caused by possible mother-acquired bacteria in newborn infants admitted to NICUs
Portuguese surveillance system data

<table>
<thead>
<tr>
<th></th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>5369</td>
<td>5058</td>
<td>4911</td>
<td>15338</td>
</tr>
<tr>
<td>GBS</td>
<td>34</td>
<td>27</td>
<td>20</td>
<td>81 (5/1000)</td>
</tr>
<tr>
<td></td>
<td>6.3/1000</td>
<td>5.3/1000</td>
<td>4.1/1000</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>37</td>
<td>39</td>
<td>24</td>
<td>100 (7/1000)</td>
</tr>
<tr>
<td></td>
<td>6.9/1000</td>
<td>7.7/1000</td>
<td>4.9/1000</td>
<td></td>
</tr>
<tr>
<td>Listeria</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>10 (0.7/1000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GBD early-onset infection

- Since 1992 AAP guidelines advise screening and prevention of GBS vertical transmission aiming to decrease early-onset infection.
- These guidelines were adopted by several countries and denied by others
- No studies on screening and prophylaxis for *E. coli* are known
The Portuguese studies
PPSU

• Group B streptococcal disease in Portuguese infants younger than 90 days
 Enrolling only septic newborn infants with positive cultures in sterile fluids * (2001-2004)
• Group B streptococcal disease - the hidden cases
 Enrolling newborn infants with proven and possible GBS infection (2006-2007)

** Neto MT Non-published data
Compared data

<table>
<thead>
<tr>
<th></th>
<th>First study</th>
<th>Second study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence of early-onset proven infection</td>
<td>0.44/1000LB</td>
<td>0.22/1000LB</td>
</tr>
<tr>
<td>Early-onset infection</td>
<td>83%</td>
<td>66%</td>
</tr>
</tbody>
</table>
Incidence

Per complete years, in the two studies

Proven infection only

Casualty or effects of screening and prophylaxis?

/1000LB

2002 2003 2004 2006 2007
GBS and *E. coli* positive blood cultures in Portuguese NICU in two different periods (in % of admitted newborn infants)

- **1999-2000**
 - GBS: 0.97%
 - E. coli: 0.44%

- **2008-10**
 - GBS: 0.77%
 - E. coli: 0.33%

5339 patients 10446 patients
Conclusions of two important studies on universal GBS screening and prophylaxis

- Rates of GBS infection declined but reflect a continued burden of disease. GBS continues the most frequent pathogen in term infants and *E. Coli* the most frequent in preterm infants.

 Stoll BJ et al. Pediatrics 2011 - USA.

- GBS screening and prophylaxis is effective in decreasing the incidence of GBS EOS; however an increase in EOS caused by *E. Coli* was noted.

Is there a reason to screen? Yes!

However, even today, against all grades of evidence, some countries do not have national guidelines

Why?
Bias related to carriers

- Colonization is intermittent
- Prevalence of carriers varies with geographic areas making obsolete national guidelines. In Portugal it is about 30% in the North and 12% in the South*

*Neto MT, 2009
Bias related to screening

- Screening should be done by 35/36 gestational week - preterm delivery is excluded
- Vaginal and rectal swabs should be done - many women only have a vaginal swab - false negative
- Specification on request should be done - false negative
- Transport and culture should be appropriate - false negative
- Once a national guideline is implemented it should be accomplished all over the country with uniform high quality
Bias related to prophylaxis

- Time before birth is needed
- Penicillin is the antibiotic of choice.
- *GBS* resistance to some of the alternatives have been reported - 10% to erythromycin in a Portuguese study*
- Early-onset infection may occur in newborn infants whose mothers were given correct prophylaxis

* Exposto F. Non-published data
Newborn infants with early-onset GBS infection
Screening and prophylaxis

<table>
<thead>
<tr>
<th></th>
<th>Neto MT</th>
<th>Stoll B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screened mothers</td>
<td>61%</td>
<td>58%</td>
</tr>
<tr>
<td>Negative screening</td>
<td>28%</td>
<td>81% in term and 26% in PT</td>
</tr>
<tr>
<td>Intrapartum Antibiotics</td>
<td>28%</td>
<td>53% all EOS</td>
</tr>
</tbody>
</table>
Newborns with early-onset infection and mother’s prophylaxis Proven and possible infection – n=57

<table>
<thead>
<tr>
<th>Positive</th>
<th>Complete prophylaxis</th>
<th>1 dose of antibiotics</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>7* (37%)</td>
<td>9</td>
<td>3</td>
</tr>
</tbody>
</table>

* One infant with positive blood culture
Bias related to those conditions supposed to protect that do not

<table>
<thead>
<tr>
<th>Proven and possible GBS early-onset infection</th>
<th>Caesarean section</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>24 (42%)*</td>
</tr>
</tbody>
</table>

* 14 (58%) with positive blood culture
Screening and prophylaxis

Screening and prophylaxis

Summarizing confounding factors

Reasons for non-screening policies

- Newborn infants with early-onset infection born to supposed negative mothers
- Newborn infants with early-onset infection born to mothers with complete prophylaxis
- Newborn infants with early-onset infection born by caesarean section
If screening has so many problems should prophylaxis be based on risk factors?
Non-screened mothers with risk factors | 57 (29%)
---|---
Term newborn infants with early-onset infection and risk factors | 35/160 (22%) *

Conclusion: Prophylaxis based on risk factors would have missed 71% of all newborn infants and 78% of term newborns with early-onset infection.
P.J. Steer and J Plumb found that only 60% of newborn infants with EOGBS disease had risk factors apparent at labour.

(Semin Fetal Neonatal Med 2011;16: 254-8)
Common-sense proposals

- Screening should be correctly performed - rectal and introit swabs, selective medium
- Women should know the meaning of carrier state in order to go to the maternity on time to start prophylaxis
- Antibiotics should be started as soon as possible instead of awaiting for a schedule
Common-sense proposals

- GBS carrier state should not be considered the only main risk for early-onset neonatal infection.
- Other risk factors have to be considered even if there is a negative GBS screening – maternal fever, prolonged rupture of membranes, laboratory signs of mother’s infection deserve attention and prophylaxis or treatment.
- In any case we know some cases will be missed.
Final conclusions

- Screening and intrapartum antibiotics, result in a significant decrease of EOGBS disease. However GBS infection still exists. Better screening and prophylaxis and avoidance of missed opportunities to prevent neonatal infection are desirable.

- *E. coli* is the second most common bacteria causing EOS and its importance should not be disregarded mainly in preterm infants.

- Monitoring of pathogens causing EOS continues an important issue.

- Adding screening to risk factors seems to be a valuable policy to improve prevention of EOS.