Short Communication

In vitro evaluation of novel reverse transcriptase inhibitors TAF (tenofovir alafenamide) and OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates of HIV-2

Inês Bártolo⁸,*, Pedro Borrego³, Perpétua Gomes⁴, Fátima Gonçalves⁵, Umbelina Caixas⁶, Inês V. Pinto⁶, Nuno Taveira⁷,⁸

³ Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal
⁴ Centro de Administração e Políticas Públicas (CAPP), Instituto Superior de Ciências Sociais e Políticas (ISGSP) da Universidade de Lisboa, Rua Almerindo Lessa, 1300-663, Lisboa, Portugal
⁵ Laboratório de Biologia Molecular, Serviço de Patologia Clínica, Centro Hospitalar Lisboa Ocidental – Hospital de Egas Moniz, Rua da Junqueira, nº 126 1349-019, Lisboa, Portugal
⁶ Serviço de Medicina 1.4, Hospital de S. José, Centro Hospitalar Lisboa Central, EPE, and Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Centro de Estudos de Doenças Crónicas - CEDOC, Rua Câmera Pestana nº, 6-A, 1150-082, Lisboa, Portugal
⁷ Medicina Interna, Hospital de Cascais Dr. José de Almeida, Av. Brigadeiro Victor Novais Gonçalves, 2755-009, Alcabideche, Portugal
⁸ Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Campus Universitário, Quinta da Granja Monte de Caparica, 2829-511, Caparica, Portugal

A B S T R A C T

New antiretroviral drugs are needed to treat HIV-2 infected patients failing therapy. Herein, we evaluate the activity of novel reverse transcriptase inhibitors tenofovir alafenamide (TAF) and OBP-601(2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates from HIV-2 infected patients experiencing virologic failure. TAF and OBP-601 were tested against twelve primary isolates obtained from nine drug-experienced patients failing therapy and three drug naïve patients using a single-round infectivity assay in TZM-bl cells. The RT-coding region of pol was sequenced and the GRADE algorithm was used to identify resistance profiles and mutations. TAF and OBP-601 inhibited the replication of almost all isolates at a median EC₅₀ of 0.27 nM and 6.83 nM, respectively. Two isolates showed moderate-level resistance to OBP-601 or TAF and two other isolates showed high-level resistance to OBP-601 or to both drugs. With one exception, all resistant viruses had canonical nucleoside reverse transcriptase inhibitors (NRTIs)-associated resistance mutations (K65R, N69S, V111I, Y115F, Q151M and M184V). Our results show that TAF has potent activity against most multi-drug resistant HIV-2 isolates and should be considered for the treatment of HIV-2 infected patients failing therapy.

Keywords:
- HIV-2
- Susceptibility to TAF
- TDF and OBP-601
- Resistance mutations

There are about 1–2 million people infected with HIV-2 worldwide most living in West Africa (Gottlieb et al., 2008), Portugal (Carvalho et al., 2012), France (Cazein et al., 2015) and India (Gurjar et al., 2009). HIV-2 is less pathogenic than HIV-1 and progression to AIDS in the absence of antiretroviral treatment (ART) is much slower in HIV-2-infected patients (on average ≥ 20 years for HIV-2 vs 10 years for HIV-1 infection) (Diamond et al., 2011; Gottlieb et al., 2002). As for HIV-1, ART prevents disease progression to AIDS and death (de Silva et al., 2008; Hansmann et al., 2005). However, options available for the treatment of HIV-2 infected patients are still limited since, in contrast to HIV-1, HIV-2 is naturally resistant to nonnucleoside reverse transcriptase inhibitors (NNRTIs) and fusion inhibitors, and it presents a reduced sensitivity to some protease inhibitors (PIs) [reviewed in (Menendez-Arias and Alvarez, 2014)]. Moreover, most ART regimens used in HIV-1 infected patients are unable to suppress viral replication in HIV-2 infected patients or to significantly increase the number of CD4⁺ T lymphocytes (Soares et al., 2011). Finally, HIV-2 has a lower genetic barrier to resistance to current drugs compared to HIV-1 (Ntemgwa et al., 2007, 2009). Hence, there is an urgent need for new antiretroviral drugs to treat HIV-2 infection.

⁸ Corresponding author. Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.
⁹ Corresponding author. Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisboa, Portugal.

E-mail addresses: ibartolo@ff.ulisboa.pt (I. Bártolo), ntaveira@ff.ulisboa.pt (N. Taveira).

https://doi.org/10.1016/j.antiviral.2018.10.018
Received 7 September 2018; Received in revised form 22 October 2018; Accepted 24 October 2018
Available online 02 November 2018
0166-3542/ © 2018 Elsevier B.V. All rights reserved.
Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir. Compared with TDF, TAF is more stable in blood and plasma (Lee et al., 2005), has more favorable renal and bone safety profiles (Sax et al., 2014, 2015) and has higher anti-HIV-1 activity at ten times lower oral doses in humans as measured by the reduction in viral load (Ruane et al., 2013).

HIV exploits two distinct resistance mechanisms against NRTIs (reviewed in Iyidogan and Anderson, 2014). First, selection of resistance mutations such as K65R in RT leads to an increase in discrimination against NRTIs by reducing the enzyme's binding affinity to the nucleoside analogue triphosphate derivatives or decreasing the incorporation rates of these nucleotides. In the excision repair mechanism, acquisition of thymidine analogue resistance mutations (TAMs) (i.e. M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) leads to the phosphorolytic removal of the chain-terminating NRTI from the primer terminus subsequent to its incorporation into viral DNA. The excision repair mechanism is rarely used by HIV-2 to acquire resistance to NRTIs (Ntemgwa et al., 2009), which is related to the presence of a methionine at position 73 in RT, instead of lysine as found in HIV-1 (Alvarez et al., 2018).

In vitro studies have shown that HIV-1 has a higher genetic barrier to resistance to TAF than to TDF (Margot et al., 2016b). Nonetheless, like in TDF-based regimens, resistance to TAF-based regimens in HIV-1 infected patients is associated with the K65R substitution in RT (with or without S66G and A62V) and preexisting TAMs (M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q/E/N/R) (Margot et al., 2006, 2016a, 2017; McColl et al., 2004; Miller et al., 2004).

Very limited information exists regarding the activity of TDF and TAF on HIV-2. One study found that TDF inhibited the replication of HIV-2 strains ROD and EHO at similar EC50 values relative to HIV-1 strain IIIB (EC50 = 1.12 μg/ml and 1.05 μg/ml vs 1.15 μg/ml) (Witvrouw et al., 2004). Similar results were found in another study comparing the sensitivity of HIV-2ROD and HIV-1ΔΔ3 to TDF (EC50 = 7.2 μM vs 7.2 μM) (Smith et al., 2008). One recent in vitro study performed on a few primary isolates (n = 3) has shown that TAF inhibits HIV-2 replication with a mean EC50 of 1.83 nM (compared with 3.63 nM for HIV-1) (Callebaut et al., 2015). In HIV-2 infected patients resistance to TDF occurs via selection of the K65R and Q151M mutations (DAMDON et al., 2004). V111I may be coselected with Q151M in some HIV-2 patients and increases the replication capacity of viruses with K65R and Q151M (Charpentier et al., 2013; DAMDON et al., 2005; DESCAMPS et al., 2004; DEUZING et al., 2015).

OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) is a novel thymidine analogue that inhibits reverse transcriptase activity. Relative to stavudine, OBP-601 is more potent against HIV-1 and causes less cellular and mitochondrial toxicity in cell culture (Dutschman et al., 2004). It is also active against most NRTI-resistant HIV-1 mutants (Li et al., 2013; Nitanda et al., 2005). In a phase Iib clinical trial the combination of lamivudine (3TC), efavirenz (EFV), and OBP601 (400 mg once a day) resulted in virologic suppression in 94% of HIV-1-infected subjects after 24 weeks of treatment, compared with 89% in the combination TDF (300 mg once a day) + 3TC + EFV. However, this trial was terminated due to higher rates of resistance (11% OBP-601 vs 1% for TDF) and gains in both peripheral and central fat for patients taking OBP-601 (Gupta et al., 2016). Interestingly, a recent study performed mainly with lab-adapted HIV-2 isolates (6 of 8) from ARV-naive patients found that OBP-601 was 9.5-fold more potent against HIV-2 than against HIV-1 in vitro (mean EC50 for HIV-1 was 610.00 nM vs 64.12 nM for HIV-2) suggesting that OBP-601 at lower doses may be useful to treat HIV-2 infected patients (Smith et al., 2015). Using site directed mutagenesis the authors also found that K65R mutation conferred HIV-2OD 3.2-fold hypersusceptibility to OBP-601 whereas Q151M alone had no effect in susceptibility. On the other hand, susceptibility to OBP-601 was 15- and 16-fold more resistant to OBP-601, respectively; even higher levels of resistance were observed for Q151M + M184V, K65R + Q151M + M184V and

K65R + N69S + V111I + Q151M + M184V mutants (53-, 111- and 105-fold, respectively).

In this study we performed the first comparative evaluation of the activity of TDF, TAF and OBP-601 against primary isolates of HIV-2 obtained from drug naïve patients and patients failing ART.

TAF and TDF were provided by Gilead Sciences. OBP-601 was provided by Oncolyx BioPharma. All but three of the twelve HIV-2 group A isolates used in this study were described before (Borrego et al., 2012; Doring et al., 2016). Three were obtained from drug naïve patients and nine were from drug-experienced patients (Table S1). The three new isolates, named 10PHTSJIG, 15PHTSJIG and 15PHTCCEC, were obtained recently from two patients failing therapy. HIV-1 reference strain NL4-3 was obtained by transfection of HEK293T cells with pNL4-3 plasmid using Fugene 6 reagent (Roche, Switzerland) according to manufacturer's instructions. The antiviral activity of TAF, OBP-601 and TDF was evaluated using
a luciferase reporter gene assay in TZM-bl cells, as previously described (Borrego et al., 2012). At least two independent experiments were performed for each analysis and each assay was set up in triplicate wells. EC₅₀ and EC₉₀ were estimated by the sigmoidal dose-response (variable slope) equation in Prism version 5.01 for windows (GraphPad Software, USA). The Man-Whitney U test was used to compare EC₅₀ and EC₉₀ values.

Drug resistance mutations in the RT-coding region of the pol gene were determined by sequencing analysis. Briefly, RNA was extracted from the isolates presenting phenotypic drug resistance using Nuclisens Isolation Kit (Organon Teknika, Holland) and nested PCR was done to obtain a 1305 bp fragment corresponding to protease and the reverse transcriptase using outer primers JA218 and JA221 and inner primers JA219 and JA220 (Table S2). Thermal cycling conditions for amplification and sequencing of this region, primer numbers and positions have been described previously (Brandin et al., 2003). DNA sequences were obtained with Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems, USA) according to the manufacturer’s recommendations and the sequences were run on an automated DNA sequencer model 310 ABI Genetic Analyser (Applied Bio- systems, USA). The GRADE algorithm was used to identify resistance mutations (http://www.hiv-grade.de/) and estimate virus susceptibility to the different antiretroviral drugs.

Evolutionary relationships and genotype of the viruses was determined by phylogenetic analysis of the RT sequences using the PhyML program implemented in SeaView software using the nearest-neighbor interchange heuristic search strategy and 1000 bootstrap replications.

In phylogenetic analysis all isolates clustered within group A which is the most common HIV-2 group in Portugal and worldwide (Viseux et al., 2016) (Fig. S1). In addition, isolates 10PTHJSJIG and 15PTHJSJIG formed a monophyletic cluster confirming their common origin.

Maximum percentage of inhibition (MPI) of the HIV-2 isolates was similar for TAF, TDF and OBP-601 (TDF, 93.8%; TAF, 94.1%; OBP-601, 96.2%, P > 0.05). Median EC₅₀ of TDF against HIV-2 isolates was 0.27 nM (range 0.04–12.95 nM) which was 3.2-fold lower compared to TDF (Fig. 1 and Table 1). In contrast, median EC₅₀ of OBP-601 was significantly higher (6.83 nM, range 0.65–2781 nM) than TDF and TAF (Fig. 1 and Table 1). Similar results were obtained for the EC₉₀ indicating that OBP-601 is significantly less potent against HIV-2 than TDF and TAF [Median (range), TDF 13.49 nM (3.95–71.43); TAF, 5.96 nM (1.00–164.40); OBP-601, 188.20 (10.31–28843.00), P < 0.001]. Regarding TDF and OBP-601, our results are in line with those obtained by Smith and collaborators (Smith et al., 2015) with the lab-adapted isolate HIV-2 K09D. Two isolates showed moderate-level resistance (MLR) to OBP-601 (10PTHJSJIG) or to TAF and TDF (15PTHCEC). Two other isolates showed high-level resistance (H LR) to OBP-601 (00PTHCC20) or to TAF and OBP-601 (03PTHSM9). Despite the HLR to TAF and OBP-601, no known NRTI resistance mutations were found in the RT of isolate 03PTHSM9, only some polymorphisms that so far have not been related with resistance (K4R, I5V, R22K, T58S, K64R, D86G, L109I, Y162H, V111L, Y115F, K223R and M184V) in 10PTHJSJIG (Table 1). Finally, substitutions were similar to this study (EC₅₀ of 1.6 nM vs 1.8 nM) confirming that TAF is a potent inhibitor of HIV-2.

Table 1
Activity of TDF, TAF and OBP-601 against each HIV-2 isolate as measured by the ECS0.

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Median EC₅₀ (nM) (fold change)</th>
<th>NRTI resistance mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-1 NL4.3</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>00PTHCC20</td>
<td>3.81 (2.23/3.2)</td>
<td></td>
</tr>
<tr>
<td>00PTHDECT</td>
<td>0.24 (0.14/0.20)</td>
<td></td>
</tr>
<tr>
<td>03PHTCHC91</td>
<td>2.40 (1.41/2.02)</td>
<td></td>
</tr>
<tr>
<td>03PHTCHC1</td>
<td>0.31 (0.18/0.26)</td>
<td></td>
</tr>
<tr>
<td>03PHTCHC6</td>
<td>0.11 (0.06/0.09)</td>
<td></td>
</tr>
<tr>
<td>03PHTSM9</td>
<td>3.38 (1.96/2.84)</td>
<td></td>
</tr>
<tr>
<td>04PHTSM10</td>
<td>1.57 (0.92/1.32)</td>
<td></td>
</tr>
<tr>
<td>10PHTMauc</td>
<td>1.02 (0.60/0.85)</td>
<td></td>
</tr>
<tr>
<td>10PHTMNC</td>
<td>0.37 (0.22/0.31)</td>
<td></td>
</tr>
<tr>
<td>10PHTSjig</td>
<td>0.72 (0.42/0.60)</td>
<td></td>
</tr>
<tr>
<td>15PHTSjig</td>
<td>0.28 (0.40/0.24)</td>
<td></td>
</tr>
<tr>
<td>15PHTCEC</td>
<td>8.57 (5.01/7.20)</td>
<td></td>
</tr>
<tr>
<td>Median EC50 (range)</td>
<td>0.87 (0.11–8.57)</td>
<td></td>
</tr>
</tbody>
</table>

* Fold-change relative to HIV-2 drug-naive isolates relative to HIV-1NL/A. 5–15 fold - moderate level of resistance; > 15 fold - high level of resistance. Fold-change values above 5 are indicated in bold letters.

b TDF vs TAF, P = 0.1124; TDF vs OBP-601, P = 0.0061; TAF vs OBP-601, P = 0.0007. P values were calculated using the Mann Whitney test.

Two isolates showed moderate-level resistance (MLR) to OBP-601 (10PTHJSJIG) or to TAF and TDF (15PTHCEC). Two other isolates showed high-level resistance (H LR) to OBP-601 (00PTHCC20) or to TAF and OBP-601 (03PTHSM9). Despite the HLR to TAF and OBP-601, no known NRTI resistance mutations were found in the RT of isolate 03PTHSM9, only some polymorphisms that so far have not been related with resistance (K4R, I5V, R22K, T58S, K64R, D86G, L109I, Y162H, V111L, Y115F, K223R and M184V) in 10PTHJSJIG (Table 1). Finally, substitutions were similar to this study (EC₅₀ of 1.6 nM vs 1.8 nM) confirming that TAF is a potent inhibitor of HIV-2.
present in the RT. Five years later this patient harboured an isolate (15PThSjig) that was fully sensitive to all tested drugs and that displayed only the M184V substitution that confers HLR to 3TC and FTC. This patient was on AZT/3TC + DRV/r + RAL from 2007 to 2009 with viral load decreasing from 127,968 RNA copies/ml to 789 copies/ml. From 2010 to 2013 a regimen with TDF + DRV/r + MVC150 was used changing to MCV + RAL + SQV/r in October 2013 and until April 2014 when therapy was interrupted. Therapy resumed in August 2015 with DRV/r + MVC150 + DTG. Hence, the long period of absence of NRTI pressure in this patient has allowed the return of the wild-type strain in 2015 which was sensitive to TAF, TDF and OPB-601 (Deeks et al., 2011; Paquet et al., 2011).

In conclusion, TAF has a potent activity against most multi-drug resistant HIV-2 isolates and should be considered for the treatment of HIV-2 infected individuals failing therapy. Identification of one isolate with resistance to TAF and OPB-601 without canonical resistance mutations is of concern and warrants further investigation to identify the determinants of resistance.

Acknowledgments

Financial support for this research was provided by the Fundação para a Ciência e a Tecnologia (FCT), Portugal (project VIH/SAU/0029/2011) and by the LIFE project of the European and Developing Countries Clinical Trials Partnership (EDCTP) program supported by the European Union. Inês Bártolo is supported by a post-doc fellowship (SRF/BP/76225/2011) from Fundação para a Ciência e a Tecnologia (FCT).

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.antiviral.2018.10.018.

References

Chemother. 51, 604–610.