Expression of Focal Adhesion Kinase in Retinoblastoma

Arnaldo Dias-Santos1,2, Vasco Bravo-Filho3,4, Dana Faingold2, Alexandre Odashiro1, Patricia Odashiro2, Lisa Jagan2, Matthew Ballazs3, Miguel N. Burnier Jr.2,3
1Interno do Internato Complementar em Oftalmologia no Departamento de Oftalmologia do Centro Hospitalar de Lisboa Central - CHLC - Lisboa, Portugal
2Henry C. Witelson Orbital Pathology Laboratory, Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
3Departamento de Oftalmologia, Universidade Federal de São Paulo - UNIFESP - São Paulo, Brasil
4Assistant Professor, Department of Pathology and Molecular Medicine, McMaster University, Canada

RESUMO

Introdução: As cinases de adesão focal (CAF) são tirosina-cinases citoplasmáticas, não recetorlas, importantes e no processo oncoénico. O objetivo deste estudo é avaliar o nível de expressão das CAF no retinoblastoma e correlacioná-la com fatores prognósticos histopatológicos.

Material e Métodos: a expressão de CAF e da sua forma ativada fosforilada - CAF [pY397] - foi avaliada em vinte espécimes de retinoblastomas por imuno-histoquímica. A imunoreatividade foi correlacionada com a idade, grau de diferenciação do tumor e com a presença ou ausência de invasão da câmara anterior, coroideia, vítreo e nervo ótico.

Resultados: A avaliação histopatológica revelou 55% de tumores pouco diferenciados, 30% moderadamente diferenciados e 15% bem diferenciados. A invasão da câmara anterior foi observada em 80% dos casos, da coroide em 35%, do vítreo em 25% e do nervo ótico em 70%. Vinte e cinco por cento dos tumores apresentaram uma forte expressão de CAF [pY397], 60% expressão moderada e 15% expressão fraca. Relativamente à imunoreatividade para CAF não fosforilada, 20% dos tumores revelaram-se fortemente positivos, 75% moderadamente positivos e 5% fracamente positivos. Não houve correlação significativa entre a expressão destas moléculas e a idade ou fatores de prognóstico histopatológicos.

Conclusão: Este estudo foi o primeiro a avaliar a expressão desta molécula no retinoblastoma. Todos os espécimes apresentaram expressão de CAF ou CAF [pY397], tendo mais de 80% exibido expressão moderada ou forte de ambas. Os resultados sugerem uma potencial relação destas moléculas com o processo oncoénico, abrindo perspectivas relativamente a novas estratégias de intervenção terapêutica no retinoblastoma.

Palavras-chave: Cinases de adesão focal; imuno-histoquímica; retinoblastoma.

ABSTRACT

Introduction: Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and plays an important role in tumorigenesis. The purpose of this study was to evaluate the expression of FAK in retinoblastoma and to correlate with histopathological prognostic factors.
Material and Methods: The expression of FAK and phosphorylated FAK (FAK[pY397]) was assessed in 20 retinoblastomas specimens via immunohistochemistry. Immunoreactivity was correlated with age, the degree of tumor differentiation and with the invasion into the anterior chamber, choroid, vitreous and optic nerve.

Results: 55% of the tumors were poorly differentiated, 30% were moderately and 15% were well differentiated. Anterior chamber invasion was observed in 80% of cases, choroidal invasion in 35% of cases, while optic nerve invasion and vitreous seeding were present in 70% and 25%, respectively. Twenty five percent of the tumors showed strong expression for FAK[pY397]. 60% moderate and 15% weak. Immunostaining for FAK revealed 20% strongly positive tumors, 75% moderately positive and 5% weakly positive. There was no significant correlation between FAK or FAK[pY397] expression and age or histopathological prognostic factors.

Conclusion: This study was the first to access the role of FAK in retinoblastoma. FAK and FAK[pY397] were expressed in all the specimens and more than 80% of the cases presented a moderate or strong expression of both these molecules. The overexpression of FAK in retinoblastoma supports a potential role for FAK in its pathogenesis, opening prospects for new strategies for therapeutic intervention in this tumor.

Key-words
Focal adhesion kinase; immunohistochemistry; retinoblastoma.

INTRODUCTION

Retinoblastoma (RB) is the most common intracocular malignancy of childhood, representing 3% of the malignant neoplasms that occur in patients younger than 15 years1,2 and less than 1% in all pediatric groups3. It has a worldwide incidence of one case per 15000–20000 live births, which corresponds to about 9000 new cases every year.4 Mortality rates range from 40–70% in Asia and Africa, to 3–5% in Europe, Canada, and the USA5,6. Treatment modalities for RB include: enucleation, transpupillary thermotherapy, cryotherapy, laser photocoagulation, chemotherapy, and radiotherapy. The indication for each method depends on the size, location and extension of the disease7. In an attempt to preserve vision and avoid mutilation procedures like enucleation, chemotherapy has assumed a pivotal role in the treatment of RB8,9. However, tumor chemoresistance and local RB recurrence continues to jeopardize treatment success, even with the use of multidrug regimens10,11. By identifying new prognostic factors and potential therapeutic agents, it may be possible to improve the standard of care for RB patients.

Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase. It is localized to focal adhesions or contact points between cells and their extracellular matrix and is highly activated by integrin-mediated stimulation of cells12,13. FAK phosphorylation at tyrosine residue 397 results in activation and modulation of signals critical for survival of anchorage-dependent cells and cell migration14. In tumors, FAK plays a pivotal role in cell viability, survival, proliferation, migration and invasion15,16. FAK overexpression is observed in a wide variety of tumors and it is frequently used as a marker of severity, invasion and metastasis17,18. In fact, it has been demonstrated that inhibition of FAK impairs growth in cancers such as cutaneous melanoma19, breast20, lung21 and ovary carcinomas22 and neural tumors such as neuroblastoma23.

To date, there have been no previous reports of FAK expression in retinoblastoma. The purpose of this study is to evaluate the expression of FAK in retinoblastoma and to correlate this expression with clinical and histopathological prognostic factors.

MATERIAL AND METHODS

Twenty formalin-fixed paraffin-embedded primary retinoblastomas were collected from the archives of the Henry C. Witelson Ocular Pathology Laboratory and Registry, McGill University, Montreal, Canada. Age and gender were obtained from histopathological reports.
Nine males aged 7, 12, 21, 23, 24, 26, 38, 39 months and eleven females aged 6, 6, 14, 16, 20, 24, 36, 36, 48, 60, 60 months were used in this study. Two sections were obtained from each specimen.

Sections were haematoxylin and eosin stained for histopathological assessment. Two independent pathologists reviewed the slides by light microscopy. The following parameters were reported: the pattern of tumor growth (endophytic, exophytic, mixed, diffuse, necrotic or spontaneous regression)\(^a\), cell differentiation status (well differentiated: Flexner-Wintersteiner rosettes or fleurettes in more than 80% of the area; moderately differentiated: Flexner-Wintersteiner rosettes or fleurettes in less than 80% of the area; poorly differentiated: absence of these structures)\(^b\), optic nerve and choroidal invasion (according to the Khelfaoui protocol)\(^c\), anterior chamber invasion and presence of vitreous seeding.

Immunohistochemistry was completed using the Ventana BenchMark LT (Ventana Medical System Inc., Arizona, USA) fully automated machine. FAK staining was performed according to the protocols and instructions provided by Ventana Medical Systems, Inc. The processing of bar code-labeled slides included baking of the slides, solvent-free deparaffinization, and CC1 (Tris-EDTA buffer, pH 8.0) antigen retrieval. One slide form each specimen was incubated with mouse monoclonal anti-human FAK (clone 77; 1:1,000; BD Biosciences, Lexington, KY) and the other slide was incubated with rabbit monoclonal anti-human FAK [pY397] (1:1,000; BioSource, Camarillo, CA) for 30 minutes at 37°C, followed by application of a biotinylated secondary antibody (8 minutes at 37°C) and an avidin-alkaline phosphatase enzyme conjugate complex (8 minutes at 37°C). Finally, the antibody was detected by Fast Red chromogenic substrate and counterstained with hematoxylin. As positive controls, sections of skin melanoma were used. For negative controls, the primary antibody was omitted.

The expression of FAK and FAK [pY397] were classified according to the intensity (0: no staining; 1: weak staining; 2: moderate staining; 3: strong staining) and percentage of positive tumor cells (0: no staining; 1: less than or equal to 25%; 2: 26% through 50%; 3: more than or equal to 51%). The scores were summed and a final score was given to each case for each anti-body. The final score was classified as weak (<3), moderate (4-5) or strong (6).

The final immunohistochemical score was correlated to age and histopathological factors indicating poor prognosis such as optic nerve, anterior chamber and choroidal invasion, tumor differentiation and vitreous

![Fig. 1](image-url) Digital photomicrograph of retinoblastoma specimens immunostained for FAK [pY397]. A) Staining intensity 3 in a poorly differentiated RB with choroidal invasion (H&E; original magnification × 4.1 using AIS equivalent to 41 x magnification in microscopy). B) Staining intensity 2 in a moderately differentiated RB (H&E; original magnification × 20 using AIS equivalent to 200 x magnification in microscopy). C) Staining intensity 3 in a RB (H&E; original magnification × 70 using AIS equivalent to 200 x magnification in microscopy). D) Staining intensity 3 in a RB with necrosis (H&E; original magnification × 20 using AIS equivalent to 200 x magnification in microscopy).

\(^a\)AIS: Apero’s Imagescope Software
Table 1

<table>
<thead>
<tr>
<th>Case</th>
<th>Differentiation</th>
<th>Growth Pattern</th>
<th>AC invasion y/n</th>
<th>Choroid invasion y/n</th>
<th>ON invasion y/n</th>
<th>Vitreous seeding y/n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PD</td>
<td>Endo</td>
<td>N</td>
<td>n</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>2</td>
<td>PD</td>
<td>Endo</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>3</td>
<td>PD</td>
<td>Mixed</td>
<td>Y</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>4</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n/a</td>
<td>y</td>
</tr>
<tr>
<td>5</td>
<td>MD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>6</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>7</td>
<td>WD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>8</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>9</td>
<td>MD</td>
<td>Endo</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>10</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>11</td>
<td>MD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>12</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>y</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>13</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>y</td>
<td>y</td>
</tr>
<tr>
<td>14</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>15</td>
<td>MD</td>
<td>Endo</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>16</td>
<td>MD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>17</td>
<td>WD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>18</td>
<td>MD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
<tr>
<td>19</td>
<td>WD</td>
<td>Diffuse</td>
<td>N</td>
<td>y</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>20</td>
<td>PD</td>
<td>Mixed</td>
<td>N</td>
<td>n</td>
<td>n</td>
<td>y</td>
</tr>
</tbody>
</table>

Histopathological classification and prognostic factors of all cases. AC = anterior chamber; endo = endophytic; exo = exophytic; MD = moderately differentiated; n = no; ON = optic nerve; n/a = not applicable; PD = poorly differentiated; WD = well differentiated; y/y = yes.

For statistical analysis of the results, the Pearson chi-squared test was used to assess whether FAK and FAK [pY397] expression differed with age and varying extents of tumor invasion and degrees of differentiation. (p < 0.05 was considered significant).

RESULTS

The mean age of the patients was 27.5 ± 16.3 months. There were 9 right eyes and 11 left eyes. In 3 cases (15%), the patients had bilateral retinoblastoma and in the remaining 17 (85%) patients the tumor was unilateral. In one case 1, it was not possible to evaluate optic nerve invasion because that tissue was lacking in the specimen. In table 1 we present the histopathological classification (differentiation and growth pattern) and prognostic factors (anterior chamber, choroidal and optic nerve invasion and vitreous seeding) of the specimens.

According to the histopathological results, 11 (55%) tumors were poorly differentiated, 6 (30%) were moderately differentiated, and 3 (15%) were well differentiated. The most frequent growth pattern was the mixed type, seen in 15 (75%) patients. This was followed by an endophytic pattern in 3 (15%) patients, the exophytic pattern in 1 (5%) patient and the diffuse pattern in 1 (5%) patient. Anterior chamber invasion was observed in 16 (80%) patients, choroidal invasion in 7 (35%) patients, optic nerve invasion in 14 (70%) patients, and vitreous seeding in 5 (25%) patients.

All cases displayed a diffuse heterogeneous pattern of immunostaining. In the anti-FAK [pY397] stained specimens, all cases revealed expression of this molecule in the nucleus and in the cytoplasm, except for two that were positive only in the cytoplasm. In this group, three (15%) cases presented weak expression, 12 (60%) presented moderate expression and 5 (25%) presented strong expression (Figure 1.). There was no significant correlation between FAK [pY397] expression and age or histopathological prognostic factors. In the anti-FAK stained specimens, all cases expressed this molecule in the nucleus and the cytoplasm. One case (5%) presented
weak FAK expression, 15 (75%) presented moderate expression and 4 (20%) presented strong expression (Figure 2). FAK expression did not correlate with either age or histopathological prognostic factors. Some non-involved intraocular tissues, like retina, choroid and ciliary body also showed weak immunostaining with both anti-FAK and anti-FAK [pY397].

DISCUSSION

In the United States, 300-350 new cases of retinoblastoma are diagnosed annually and 5000 cases are diagnosed worldwide\(^{39,40}\). In developed countries, over 95% of children will survive this malignancy and 90% will retain vision in at least one eye\(^{40,41}\). In the developing world, the mortality rate reaches about 70%, mainly due to delayed diagnosis. The major threat for retinoblastoma is its invasive nature and chemoresistance. An understanding of the mechanisms responsible for the aggressive retinoblastoma phenotype is essential, as these factors must be considered in the development of new drugs and more selective chemotherapeutic regimens. In particular, protein tyrosine kinases have emerged as a potential therapeutic target because of the important role they play in cellular mechanisms such as differentiation, proliferation, regulatory processes and signal transduction\(^{42}\).

FAK is a cytoplasmic non-receptor protein tyrosine kinase with several functions. Structurally, FAK plays an important role in cell-cell and cell-extracellular matrix adhesion. Once phosphorylated, the activated FAK transmits ligand-dependent cell signals downstream of integrins, growth factors and G protein-coupled receptors\(^{43}\). During its activation, it is sequentially phosphorylated on its major autophosphorylation site, Tyr 397, and other sites, namely Tyr 576, thus rendering this molecule a fully active kinase\(^{44}\). In addition to this well-described role as a cytoplasmic kinase, FAK has demonstrated activity in the nucleus. Pathological stimuli such as cell-de-adhesion from the substrate\(^{45}\), oxidative stress\(^{46}\) and FAK inhibition\(^{47,48}\) may promote FAK nuclear migration. Furthermore, FAK enhances cell survival and proliferation through its nuclear kinase independent roles, by promoting p53 degradation via ubiquitination\(^{49}\). It also acts as a co-transcriptional regulator capable of altering gene transcription\(^{50}\). FAK is implicated in tumor invasion by regulating the activity of proteolytic enzymes like urokinase\(^{50,51}\). In studies of malignant melanoma, FAK expression was correlated to the migration
potential of cells. In studies of retinal pathologies, FAK overexpression enhanced angiogenesis in the retina. Thus, FAK has been implicated in numerous functional aspects of cancer including epithelial mesenchymal transition, maintenance of cancer stem cells, promotion of tumor cell survival, angiogenesis, invasion and metastasis.

Because FAK is involved in multiple mechanisms related to tumor proliferation, invasion and metastasis, it is worthwhile to explore the role of FAK in RB. Therefore, we evaluated the expression of FAK in a series of 20 cases of retinoblastoma and all cases expressed FAK at detectable levels. Strong and moderate expression of FAK [pY397] and FAK was seen in 85% and in 95% of the cases, respectively. The high rates of positivity obtained in this study confirm that FAK is significantly overexpressed in retinoblastoma, implying that both phosphorylated and nonphosphorylated FAK may play an important role in its pathogenesis. FAK overexpression has been demonstrated in a variety of malignancies including cutaneous melanoma, breast, lung, ovary and colon carcinomas, Ewing sarcoma, gastrointestinal stromal tumor and neural tumors such as neuroblastoma and glioblastoma. Some cancers which have demonstrated a correlation between FAK expression and poor prognosis include breast, colorectal, lung cancer, oesophageal squamous cell carcinoma, hepatocellular and oral squamous cell carcinoma. In uveal melanoma cell lines the expression of phosphorylated FAK correlated with the acquisition of an invasive phenotype and vasculogenic mimicry. Our study found no correlation between FAK immunostaining and histopathological prognostic factors. This may be partly related to the limited sample size. Our findings are in line with studies of colon adenocarcinoma and pancreatic cancer, where FAK expression did not correlate with histopathological markers or prognosis. It is important to note that in one study of invasive cervical cancer, weak expression of FAK was found to be a strong independent predictor of poor patient outcomes. This suggests a more complex role of this kinase in carcinogenesis.

It is plausible that FAK is involved in multiple stages of tumor progression, given the overexpression observed in both differentiated and non-differentiated RB tumors. In early malignant transformation, FAK may be implicated in the regulation of apoptosis and tumor proliferation. In the later stages of RB development, FAK may play a role in tumor progression, invasion and metastasis.

Due to the multiple roles of FAK in tumor development and metastatic cascade, it is currently being investigated as a new target for therapeutic intervention. The presence of FAK in non-tumoral tissues in the eye and its roles in both normal and diseased cells may be a concerning factor regarding therapy. In our sample, both FAK and FAK [pY397] were highly expressed, precluding discrimination between aggressive and non-aggressive status. On the contrary, in a study by Hess et al., phosphorylated FAK on Tyr397 and Tyr576, was found to be expressed only in the most aggressive cutaneous and uveal melanoma cells, thus rendering FAK [pY397] as a potential therapeutic target. A better understanding of the roles of FAK and FAK [pY397] in retinoblastoma may provide new insights into possible therapeutic intervention strategies.

A limitation of our study was the absence of clinical data regarding the enucleated specimens. As a result we cannot be sure whether any specimen was a primary enucleation, or if chemotherapy or radiotherapy was administered before surgery. Therefore, from our series it is not possible to determine whether conservative treatments had any influence on the expression of FAK and FAK [pY397].

To the best of our knowledge, this is the first study addressing the expression of FAK in retinoblastoma. The overexpression of this kinase suggests that FAK may play a key role in the progression of RB. Further studies regarding the roles of FAK in RB and the potential effect of its inhibition are warranted.

REFERENCES

30. de Vicente JC, Rosado P, Lequerica-Fernandez P,

54. Zhao X, Guan JL. Focal adhesion kinase and its

