Glaucoma

Ophthalmic Artery Doppler Waveform Changes Associated with Increased Damage in Glaucoma Patients

Luís Abegão Pinto,1,2 Evelien Vandewalle,3 Eline De Clerck,3 Carlos Marques-Neves,2 and Ingeborg Stalmans3

PURPOSE. To characterize Doppler waveform variables (early systolic acceleration [ESA] and systolic/diastolic mean velocity ratios [Sm/Dm]) of the Ophthalmic Artery (OA) by color Doppler imaging (CDI) in eyes with primary open-angle glaucoma (POAG).

METHODS. Analysis of CDI examinations of the retrobulbar circulation of patients with POAG (n = 102), normal tension glaucoma (NTG, n = 89), and healthy controls (n = 59) by a condition-masked investigator. One-way ANOVA, chi-square, and Spearman’s rank correlation tests were used to determine differences, establish comparisons, and to explore associations between variables, respectively.

RESULTS. The overall Doppler waveform presented a shift to the right in the glaucoma groups, with significantly lower Sm/Dm ratios when compared to the control group (healthy: 2.94 ± 0.86, POAG: 2.60 ± 0.67, NTG: 2.63 ± 0.84; P = 0.01). ESA was significantly lower in the glaucoma groups (healthy: 688.8 ± 484 cm s−2, POAG: 548.1 ± 419 cm s−2, NTG: 548.5 ± 337 cm s−2; P = 0.05). No statistical differences were, however, detected in the OA velocities or resistance index (P ranged between 0.08 and 0.96). In the glaucoma groups, waveform parameters such as ESA, acceleration time, and systolic mean velocities correlated with systemic blood pressure variables (P < 0.05). In these groups, negative correlations were detected between Sm/Dm ratios and the degree of visual field defects (POAG: P = 0.01; r = −0.25) and retinal nerve fiber layer thickness (NTG: P = 0.02; r = −0.25).

CONCLUSIONS. The pattern of blood flow velocities in the OA throughout the cardiac cycle seems to be altered in glaucoma patients. Further studies on how systemic blood pressure affects waveform variables in glaucoma patients may provide a better understanding of an underlying vascular dysfunction. (Invest Ophthalmol Vis Sci. 2012;53:2448–2453) DOI: 10.1167/iovs.11-9388

Primary open-angle glaucoma (POAG) is one of the most prevalent causes of irreversible blindness in the industrialized world.1 The mainstay of current therapies has been to decrease the main modifiable risk factor: intraocular pressure (IOP). However, and despite significant decreases in IOP, there are a significant number of patients that show signs of disease progression.2,3 The search for other risk factors has led to the identification of a number of vascular alterations in patients with glaucoma, especially the ones with an otherwise normal IOP (normal tension glaucoma, or NTG). Patients with glaucoma have been found to have an increased incidence of peripheral vasospasms,2 migraine,5 systemic hypotension1 and silent organ ischemia,6 in what has been suggested to be signals of a systemic vascular dysfunction. In the ocular circulation, a number of studies have used color Doppler imaging (CDI) technology to assess the retrobulbar arteries. Most of them have found reduced peak systolic velocities (PSV) and increased resistivity indices (RI) in the retrobulbar vessels of glaucoma patients when compared to healthy normal controls.8-11 The vast majority of these studies have looked at only 3 variables: PSV, RI, and end-diastolic velocities (EDV) of the Doppler waveform of these arteries. In other medical specialties, however, much more information is usually retrieved from the analysis of the arterial waveforms. For example, the slope of the fastest-moving portion of the systolic component (early systolic acceleration, or ESA) and the time duration of that slope (acceleration time, or AT) have been extensively used in renal and hepatic arteries to identify changes in vascular lumen and altered distal resistance.12,13 These parameters have been clinically used to predict transplantation failures and detect significant arterial stenosis.14-16 Another aspect of the Doppler waveform is the ratio between the mean velocities of the systolic and diastolic components. This evaluation of the shift of blood flow velocities toward the beginning or the end of the cardiac cycle depends on both the arterial compliance and resistance characteristics.17,18 To the authors’ best knowledge, none of the previous studies have performed any such analysis of the retrobulbar arteries of glaucoma patients. This study aims at further characterizing the ophthalmic artery’s Doppler waveform in glaucoma patients, and to clarify whether any of these new variables can provide further insights on the vascular aspects of glaucoma.

METHODS

Three cohorts of individuals over 18 years old were recruited for the study: patients with NTG (n = 89), patients with POAG (n = 102), and age-matched healthy controls (n = 59). This latter group was recruited from the persons accompanying the patients. Glaucoma patients were defined as having characteristic optic disc damage and visual field loss.19-20 For the diagnosis of POAG, an untreated IOP of above 21 mm Hg was required. Current medical treatment, including topical IOP lowering drugs, was continued. The healthy volunteers were screened by a glaucoma specialist (IST) and those with a family history of glaucoma, an increased or asymmetrical cup/disc ratio or any other optic disc structural change (notching, disc hemorrhage), or an IOP

From the 1Department of Ophthalmology, Centro Hospitalar de Lisboa Central, Portugal; the 2Faculty of Medicine, Lisbon University, Portugal; and the 3Department of Ophthalmology, University Hospitals Leuven, Belgium.

Submitted for publication December 22, 2011; revised February 16, 2012; accepted February 29, 2012.

Disclosure: L. Abegão Pinto, None; E. Vandewalle, None; E. De Clerck, None; C. Marques-Neves, None; I. Stalmans, None

Corresponding author: Ingeborg Stalmans, Department of Ophthalmology, University Hospitals Leuven, Campus St Raphael, Kapucijnenvoer 33, B-3000 Leuven, Belgium; ingeborg.stalmans@uzleuven.be.
Patient Characteristics

Contingency tables were used to analyze characteristics of OA Doppler wavefront. Kruskal-Wallis test was used to analyze ESP prevalence. Statistically significant differences were considered when \(P < 0.05 \). Values depicted as mean ± SD unless otherwise indicated. Analyses were performed using Graphpad Prism ver. 5.0 (GraphPad Software Inc., La Jolla, CA).

Table 1: Patient Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>NTG</th>
<th>POAG</th>
<th>Kruskal-Wallis/Mann-Whitney</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>59</td>
<td>89</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>71.44 ± 10.0</td>
<td>69.31 ± 12.1</td>
<td>68.25 ± 12.6</td>
<td>0.45</td>
</tr>
<tr>
<td>IOP</td>
<td>15.07 ± 2.88</td>
<td>12.99 ± 2.68</td>
<td>14.61 ± 4.69</td>
<td>0.0003</td>
</tr>
<tr>
<td>Visual acuity</td>
<td>0.22 ± 0.31</td>
<td>0.30 ± 0.40</td>
<td>0.24 ± 0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>RNFL</td>
<td>0.154 ± 0.10</td>
<td>0.154 ± 0.10</td>
<td>0.147 ± 0.09</td>
<td>0.41</td>
</tr>
<tr>
<td>CCT</td>
<td>564.2 ± 53.3</td>
<td>549.8 ± 34.0</td>
<td>552.8 ± 38.7</td>
<td>0.26</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>152.8 ± 20.9</td>
<td>146.3 ± 25.9</td>
<td>149.7 ± 22.4</td>
<td>0.27</td>
</tr>
<tr>
<td>Diastolic BP</td>
<td>82.09 ± 11.5</td>
<td>82.73 ± 13.9</td>
<td>86.47 ± 11.3</td>
<td>0.02</td>
</tr>
<tr>
<td>BP amplitude</td>
<td>70.72 ± 19.0</td>
<td>65.69 ± 22.4</td>
<td>63.27 ± 18.1</td>
<td>0.04</td>
</tr>
<tr>
<td>MOPP</td>
<td>91.47 ± 12.1</td>
<td>91.07 ± 15.1</td>
<td>90.00 ± 21.9</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Mean values (and SD) are depicted. Kruskal-Wallis indicates \(P \) values of overall differences between the diagnostic groups. Mann-Whitney test used in pairwise comparisons.

Measuring Devices

IOP was measured with the Goldmann applanation tonometer (GAT). Central corneal thickness (CCT) was measured using a Pachmate DGH55 (DGH Technology Inc., Exton, PA). Retrobulbar flow velocities and indexes were measured with the Antares CDI device (Siemens, Munich, Germany): PSV, EDV, and RI of the central retina artery (CRA), nasal and temporal short ciliary arteries (NPCA and TPCA, respectively), and ophthalmic artery (OA), as well as Doppler waveform characteristics of this last vessel: ESA, AT, early systolic peak (ESP), and ratio of mean flow velocity during systole and diastole (Sm/Dm) (Fig. 1). Visual acuity was tested using the Early Treatment of Diabetic Retinopathy Study (ETDRS) chart placed in the same location at the same distance from the patient under the same illumination for all subjects. Blood pressure measurement was taken from subject’s right arm using an electronic sphygmomanometer (Omron, Schaumburg, IL).

Experimental Design

Patients were instructed to avoid caffeine intake, smoking, and exercise for 3 hours prior to the study visit. The study was approved by the ethical review committee (Institutional Review Board) at the University Hospitals Leuven and was conducted in accordance with Good Clinical Practice within the tenets of the Declaration of Helsinki. Each patient/subject was required to sign an informed consent statement before being enrolled into the study and prior to any study measurements being taken. During the study visit, the following examinations were performed in the same order: visual acuity (using the ETDRS chart placed in the same location at the same distance from the patient under the same illumination for all subjects), IOP measurement by GAT, pachymetry, blood pressure and heart rate measurements, and finally CDI. All CDI measurements were performed by a single observer (LAP) masked to the patient diagnosis. Waveform analysis was performed only in the OA. Only one eye per patient was included in the study. The eye with greater glaucomatous damage was selected in the glaucoma patients, and a randomly selected eye in the healthy individuals.

Statistical Analysis

Kruskal-Wallis tests were used to compare the 3 diagnostic groups on different variables. A Mann-Whitney test was used in pairwise comparisons. Chi-square tests (for 3 × 2 contingency tables) were used to analyze ESP prevalence. The existence of correlation between variables was explored using Spearman’s correlation. Statistical significance was considered when \(P < 0.05 \). Values depicted as mean ± SD unless otherwise indicated. Analyses were performed using Graphpad Prism ver. 5.0 (GraphPad Software Inc., La Jolla, CA).

Results

Patient Characteristics

Table 1 summarizes the patient characteristics in the different diagnostic groups with their comparative \(P \) values. Kruskal-Wallis test indicated no overall differences in age, visual acuity, central corneal thickness, and mean ocular perfusion pressure (MOPP) (range between 0.26 and 0.88). IOP was statistically different between the 3 groups (\(P < 0.001 \)), with the NTG group presenting lower IOP than the other 2 groups (healthy versus NTG: \(P < 0.001 \); POAG versus NTG: \(P = 0.005 \)). IOP difference between healthy and POAG groups did not reach statistical significance (healthy versus POAG: \(P = 0.12 \)). While systolic blood pressure was not significantly different between the groups (\(P = 0.27 \)), diastolic pressure was statistically different (\(P = 0.02 \)). Pairwise comparison revealed diastolic pressure in POAG group to be higher than both healthy and NTG groups (versus healthy: \(P < 0.01 \); versus NTG: \(P = 0.03 \)). Blood pressure amplitudes were lower in both glaucoma groups, but not significantly different between the 2 (healthy versus POAG: \(P = 0.02 \); healthy versus NTG: \(P = 0.05 \); NTG versus POAG: \(P = 0.89 \)). A Mann-Whitney test failed to
detect any differences in functional or structural damage between the 2 glaucoma groups (visual field mean defect [MD], P = 0.50; retinal nerve fiber layer (RNFL) thickness, P = 0.41). Topical and systemic medications are summarized in Table 2.

Retrobulbar Flow Velocities in Glaucoma Patients and Healthy Controls

Table 3 depicts the data from CDI examinations. Despite a pairwise difference between healthy and NTG patients at the NPCA (P = 0.04), the overall comparison between RI from each of the four arteries was not statistically different (P ranged from 0.08 to 0.27). PSV was significantly different in the CRA, NPCA, and TPCA (P < 0.05), with pairwise comparison detecting slower velocities in the glaucoma groups when compared with the healthy controls (P < 0.02 in all pairwise comparisons). Overall differences in EDV were detected in NPCA (P = 0.01), with a Mann-Whitney test detecting NTG patients to have a significantly lower EDV value when compared to the control group (P < 0.01), while the POAG group's decrease was only borderline significant (P = 0.05). No statistical difference was found in the OA velocities or resistance index (P ranged between 0.08 and 0.96).

Ophthalmic Artery Waveform Analysis in the 3 Diagnostic Groups

Table 4 describes the Doppler waveform characteristics and overall comparison between the 3 groups. The AT, incidence of ESP, and Sm and Dm readings were similar between the groups (P ranged between 0.07 and 0.94). The ESA and the Sm/Dm ratios were significantly different between the groups (P = 0.03 and P = 0.01, respectively). Pairwise, a Mann-Whitney test detected glaucoma groups to have lower ESA values when compared to healthy controls (versus NTG, P = 0.009; versus POAG, P = 0.04) as well as smaller Sm/Dm ratios (versus NTG, P = 0.01; versus POAG, P = 0.02). ESA and Sm/Dm ratio were not different between the two glaucoma groups (P = 0.65 and P = 0.55, respectively). A Spearman's rank correlation test between the Doppler waveform variables and MOPP detected a statistical relation to exist in the NTG group. In these patients, MOPP correlated positively with ESA (P = 0.05; r = 0.24) and negatively with AT (P < 0.01; r = −0.57). No relation existed with Sm, Dm, or Sm/Dm ratio (P ranged between 0.15 and 0.71). In both POAG and healthy control groups, no relation between MOPP and any of the waveform variables was detected (P ranged between 0.15 and 0.98).

Relationship between Ophthalmic Artery Waveform Variables and Blood Pressure Variables

In the healthy group, only blood pressure amplitude had a correlation with one of the waveform variables (Sm/Dm; P < 0.01, r = 0.42). In the glaucoma groups, on the other hand, there was a positive correlation between the systemic variables and the waveform analysis. The POAG group had both systolic blood pressure and blood pressure amplitude correlating with AT, Sm, and Sm/Dm (P < 0.05). In addition to those correlations, in the NTG group there were also associations between waveform variables and MOPP and diastolic blood pressure (P < 0.05). The complete analysis is represented in Table 5.

Relationship between Ophthalmic Artery Waveform Variables and Functional and Structural Glaucoma Damage

Table 6 depicts the correlations between the Doppler waveform variables and the degree of functional and structural damage in the glaucoma groups. The Sm/Dm ratio negatively correlated with the extent of glaucomatous damage in both glaucoma groups. In the NTG group, Sm/Dm ratio correlated with structural damage (P = 0.02; r = −0.25), while in the POAG group this ratio correlated with the functional variable of visual field mean defect (P = 0.01; r = −0.35). When considering all the glaucoma patients (both POAG and NTG), there is a significant correlation between Sm/Dm ratio and visual field mean defect (P < 0.001; r = −0.26) with the degree of functional defect correlating with Dm (P = 0.01; r = 0.19). In these combined glaucoma patient groups, the correlation of Sm/Dm with structural damage did not reach a statistically significant value (P = 0.07).

Table 2. Topical Medications

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>NTG</th>
<th>POAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta blockers</td>
<td>-</td>
<td>37 (41.6)</td>
<td>33 (32.4)</td>
</tr>
<tr>
<td>Prostaglandin analogs</td>
<td>-</td>
<td>35 (39.3)</td>
<td>36 (35.3)</td>
</tr>
<tr>
<td>Carboxy anhydrase inhibitors</td>
<td>-</td>
<td>31 (34.8)</td>
<td>22 (21.6)</td>
</tr>
<tr>
<td>Y-adrenergic agents</td>
<td>-</td>
<td>7 (7.9)</td>
<td>6 (5.9)</td>
</tr>
</tbody>
</table>

Number of patients and percentage (between brackets) are depicted.

Table 3. Comparison of Flow Velocities and Resistance Indexes between Diagnostic Groups

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>NTG</th>
<th>POAG</th>
<th>Overall</th>
<th>H-N</th>
<th>H-P</th>
<th>N-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRA PSV</td>
<td>12.0 ± 4.38</td>
<td>10.52 ± 3.58</td>
<td>10.20 ± 3.46</td>
<td>0.03</td>
<td>0.02</td>
<td>0.007</td>
<td>0.72</td>
</tr>
<tr>
<td>EDV</td>
<td>3.10 ± 1.12</td>
<td>2.87 ± 1.08</td>
<td>2.75 ± 0.95</td>
<td>0.11</td>
<td>0.12</td>
<td>0.04</td>
<td>0.63</td>
</tr>
<tr>
<td>RI</td>
<td>0.73 ± 0.07</td>
<td>0.71 ± 0.08</td>
<td>0.72 ± 0.07</td>
<td>0.27</td>
<td>0.12</td>
<td>0.35</td>
<td>0.39</td>
</tr>
<tr>
<td>NPCA PSV</td>
<td>11.08 ± 3.76</td>
<td>8.58 ± 2.69</td>
<td>9.44 ± 2.70</td>
<td><0.001</td>
<td><0.001</td>
<td>0.005</td>
<td>0.01</td>
</tr>
<tr>
<td>EDV</td>
<td>3.53 ± 1.53</td>
<td>2.92 ± 0.99</td>
<td>3.11 ± 1.08</td>
<td>0.01</td>
<td>0.002</td>
<td>0.05</td>
<td>0.22</td>
</tr>
<tr>
<td>RI</td>
<td>0.68 ± 0.08</td>
<td>0.65 ± 0.07</td>
<td>0.66 ± 0.07</td>
<td>0.12</td>
<td>0.04</td>
<td>0.36</td>
<td>0.21</td>
</tr>
<tr>
<td>TPCA PSV</td>
<td>11.0 ± 3.87</td>
<td>9.12 ± 2.81</td>
<td>9.30 ± 2.60</td>
<td>0.004</td>
<td>0.002</td>
<td>0.006</td>
<td>0.48</td>
</tr>
<tr>
<td>EDV</td>
<td>3.45 ± 1.36</td>
<td>3.06 ± 1.09</td>
<td>3.15 ± 0.92</td>
<td>0.14</td>
<td>0.06</td>
<td>0.31</td>
<td>0.23</td>
</tr>
<tr>
<td>RI</td>
<td>0.68 ± 0.08</td>
<td>0.66 ± 0.08</td>
<td>0.66 ± 0.06</td>
<td>0.27</td>
<td>0.19</td>
<td>0.11</td>
<td>0.92</td>
</tr>
<tr>
<td>OA PSV</td>
<td>40.1 ± 16.9</td>
<td>33.6 ± 11.2</td>
<td>35.9 ± 13.9</td>
<td>0.07</td>
<td>0.02</td>
<td>0.06</td>
<td>0.49</td>
</tr>
<tr>
<td>EDV</td>
<td>7.35 ± 4.36</td>
<td>6.79 ± 3.32</td>
<td>7.49 ± 4.89</td>
<td>0.96</td>
<td>0.75</td>
<td>0.97</td>
<td>0.95</td>
</tr>
<tr>
<td>RI</td>
<td>0.82 ± 0.07</td>
<td>0.80 ± 0.07</td>
<td>0.80 ± 0.07</td>
<td>0.08</td>
<td>0.08</td>
<td>0.05</td>
<td>0.93</td>
</tr>
</tbody>
</table>

Velocities and indexes of the 3 diagnostic groups, at each of the 4 vessels. Pairwise comparisons (H versus NTG, H versus POAG, and NTG versus POAG) were done with a Mann-Whitney test. Overall comparison was done with a Kruskal-Wallis test. Mean values (SD) are depicted. H, healthy.
pressure; BP dias, diastolic blood pressure; BPA, blood pressure amplitude (BP systolic – BP diastolic).

Table 4. Analysis of the Ophthalmic Artery Waveform in the Diagnostic Groups

<table>
<thead>
<tr>
<th></th>
<th>Healthy</th>
<th>NTG</th>
<th>POAG</th>
<th>Kruskal-Wallis/Chi-Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA</td>
<td>688.8 ± 483.6</td>
<td>548.5 ± 337.1</td>
<td>548.1 ± 418.5</td>
<td>0.03</td>
</tr>
<tr>
<td>AT</td>
<td>0.049 ± 0.01</td>
<td>0.057 ± 0.05</td>
<td>0.051 ± 0.02</td>
<td>0.59</td>
</tr>
<tr>
<td>ESP</td>
<td>3/59</td>
<td>4/89</td>
<td>8/102</td>
<td>0.59</td>
</tr>
<tr>
<td>Sm</td>
<td>31.26 ± 14.9</td>
<td>26.08 ± 9.83</td>
<td>27.39 ± 12.1</td>
<td>0.07</td>
</tr>
<tr>
<td>Dm</td>
<td>11.57 ± 6.46</td>
<td>10.79 ± 4.77</td>
<td>11.39 ± 6.7</td>
<td>0.94</td>
</tr>
<tr>
<td>Sm/Dm ratio</td>
<td>2.94 ± 0.86</td>
<td>2.63 ± 0.84</td>
<td>2.60 ± 0.67</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Mean values (and SD) are depicted. Kruskal-Wallis indicates P values of overall differences between the diagnostic groups. Chi-square indicates P values of the prevalence of the ESP in each of the diagnostic groups.

DISCUSSION

This study was conducted to evaluate the relevance of studying Doppler waveform variables of the ophthalmic artery in glaucoma patients. Secondly, the authors checked whether correlations could be determined between these variables and parameters of glaucoma damage. Despite the lack of significant differences in velocities and resistance indexes between the ophthalmic arteries of the diagnostic groups, patients in both glaucoma groups had lower ESA and Sm/Dm ratios. Lower Sm/Dm ratios have been suggested to reflect higher levels of systemic arterial compliance. Converting a central pulsatile flow into a steady flow in the peripheral tissues (Windkessel function) depends on the arteries’ compliance status. During the cardiac cycle, a portion of the kinetic energy from each systolic pulse is stored within the compliance of the vascular tree by distension of the vessel walls. When intravascular pressure decreases toward the end of systole, this potential energy is released as compliance flow. In low distal resistance settings, this anterograde compliance flow prolongs systole and provides anterograde flow in diastole. When distal resistance is high, the compliance flow is now retrograde and does not contribute to the diastolic pulse. The results of this study thus reflect a lower distal vascular resistance, an otherwise adaptive response by a vascular territory capable of autoregulation to a state of low-perfusion. In cerebral circulation, for example, decreases in the main arteries’ perfusion pressure are compensated by dilation in more distal, pial arteries. This increase in the cross-section vascular area lessens distal resistance and keeps blood flow velocities within normal range. Only when these small vessels reach their maximal dilation capability does mean blood flow velocity (MFV) decay. As MFV is part of the vessel’s pulsatility index (PI) calculations (PI = [PSV–EDV]/MFV), this leads to a dramatic increase in PI, which has been clinically used as a surrogate of the exhausting of the cerebral circulation autoregulation ability. Beyond such point, there is a linear correlation between pressure and blood flow, as the ability to regulate that flow no longer exists. Considering the existence of a correlation between blood pressure variables and waveform characteristics in glaucoma patients, the authors’ data suggests an inability to regulate blood flow in the face of blood pressure changes in these patients. These results are in line with the existing literature on blood flow velocities and arterial pressure in glaucoma patients. In healthy individuals, only blood pressure amplitude had a correlation with a waveform variable (Sm/Dm ratio). In glaucoma patients, however, waveform variables were much more sensitive to changes in blood pressure, especially in the NTG population. While the results of this study in healthy individuals are in line with published literature where blood pressure amplitude affects OA blood flow, the fact that the glaucoma patients in this study had a different hemodynamic profile may be responsible for the different waveform patterns. The higher diastolic blood pressure values and consequently decrease in blood pressure amplitude could be associated with an overall increase in peripheral vascular tonus and relaxation impairment.

Interestingly, the authors identified a correlation to exist between the extent of glaucomatous damage and a shift to the left in blood flow, mainly at the expense of a decrease of the diastolic mean flow (Fig. 2). As these results reveal glaucoma patients to have simultaneous signs of changes in blood flow patterns and inadequate mechanisms of autoregulation despite similar MOPP values when compared to the healthy groups, none of the previous hypotheses would provide a full explanation. A possible alternative is presented by Doppler studies elsewhere in the body. Transmitral flow analysis for

Table 5. Correlation between OA Waveform Characteristics and Cardiovascular Parameters

<table>
<thead>
<tr>
<th></th>
<th>ESA</th>
<th>AT</th>
<th>Sm</th>
<th>Dm</th>
<th>Sm/Dm Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy BP sys</td>
<td>0.21</td>
<td>0.06</td>
<td>0.42</td>
<td>0.93</td>
<td>0.08</td>
</tr>
<tr>
<td>Healthy BP dias</td>
<td>0.43</td>
<td>0.55</td>
<td>0.73</td>
<td>0.68</td>
<td>0.17</td>
</tr>
<tr>
<td>Healthy BP amp</td>
<td>0.07</td>
<td>0.08</td>
<td>0.39</td>
<td>0.52</td>
<td><0.01 (0.42)</td>
</tr>
<tr>
<td>POAG MOPP</td>
<td>0.33</td>
<td>0.90</td>
<td>0.52</td>
<td>0.58</td>
<td>0.77</td>
</tr>
<tr>
<td>POAG BP syst</td>
<td>0.09</td>
<td>0.03 (–0.25)</td>
<td>0.03 (0.24)</td>
<td>0.97</td>
<td>0.01 (0.27)</td>
</tr>
<tr>
<td>POAG BP dias</td>
<td>0.97</td>
<td>0.24</td>
<td>0.26</td>
<td>0.46</td>
<td>0.53</td>
</tr>
<tr>
<td>POAG BP amp</td>
<td>0.02 (0.24)</td>
<td>0.02 (–0.25)</td>
<td>0.02 (0.24)</td>
<td>0.74</td>
<td><0.01 (0.38)</td>
</tr>
<tr>
<td>POAG MOPP</td>
<td>0.88</td>
<td>0.15</td>
<td>0.19</td>
<td>0.98</td>
<td>0.34</td>
</tr>
<tr>
<td>NTG BP sys</td>
<td><0.01 (0.32)</td>
<td><0.01 (–0.36)</td>
<td>0.02 (0.25)</td>
<td>0.12</td>
<td>0.31</td>
</tr>
<tr>
<td>NTG BP dias</td>
<td>0.57</td>
<td>0.049 (–0.22)</td>
<td>0.46</td>
<td>0.05 (0.22)</td>
<td>0.06</td>
</tr>
<tr>
<td>NTG BP amp</td>
<td><0.01 (0.44)</td>
<td><0.01 (–0.35)</td>
<td><0.01 (0.31)</td>
<td>0.24</td>
<td>0.02 (0.25)</td>
</tr>
</tbody>
</table>

P values of Spearman correlations are depicted (values on coefficient of correlation in brackets when P < 0.05). BP syst, systolic blood pressure; BP dias, diastolic blood pressure; BPA, blood pressure amplitude (BP systolic – BP diastolic).
ventricular diastolic dysfunction has remarkable similarities to
the data found in this study. A normal relaxed ventricle has a
left upward waveform. A stiffer, less compliant ventricle
prolongs relaxation time, reducing early velocities and
increasing late diastolic velocities, producing a rightward
movement. However, when the ventricular dysfunction is high
enough, there is a “pseudo-normalization” of the waveform.
The very high ventricular stiffness, coupled with a secondary
upstream increase in pressure, returns the blood flow pattern
into an otherwise normal left upward waveform. In the last
stages of diastolic dysfunction, a restrictive pattern develops
where flow is almost abolished in this last part of the cardiac
cycle.31,32 This waveform progression pattern is very interest-
ing, as the more advanced glaucoma waveform’s shift to the
left could be compared to this pseudo-normalization phenom-
emon. While the ocular circulation and its similarities to other
territories remains incompletely understood, more studies
would be needed to validate this diastolic dysfunction. This
dysfunction could, however, be associated to a number of
conditions known to exist in glaucoma patients, from vascular
endothelial dysfunction33 to increases in the levels of
vasoconstrictive agents such as endothelin-1.34 Additionally,
there are additional factors that may potentiate the vascular
changes that may exist in these patients. The curved anatomy
of the OA makes it more vulnerable to changes in tone and its
possible repercussion on perfusion pressures. Large, more
muscular straightline arteries, such as the carotid arteries,
require up to 70% of their lumen to be obstructed in order to
have a clinically significant hemodynamic impact. However,
a change of just 36% in the luminal diameter of a curved arterial
segment, such as the OA, would be enough to cause a decrease
in the perfusion pressure.35 While changes of this magnitude
are still unlikely, further studies are needed to assess the in vivo
diameter of this vessel throughout its entire path.

Of note, the current hypothesis of impairment in the
compliance status of the ocular circulation may be important
when assessing vascular resistance through Doppler studies.
As changes in compliance and blood pressure amplitude has
been suggested to affect the ability of RI to reflect true vascular
resistance,36 this impairment in compliance could potentially
affect the interpretation of this widely-used CDI variable.

There are, however, important limitations in this study. The
authors’ Doppler studies have not included the analysis of the
carotid arteries that could detect any increased prevalence of
significant stenosis in the glaucoma groups. Existing literature,
however, does not support this idea.37,38 Secondly, the authors
could not determine the perfusion pressure in the ophthalmic
tertery. The authors’ interpretation of the waveform is,
however, supported in existing data from Doppler studies in
other vascular territories in both physiological and patholog-
ical conditions. Until the mechanisms of ocular vascular
dysfunction are fully understood, our interpretation of these
results remains a working hypothesis. Furthermore, the fact
that a significant number of patients from both glaucoma
groups were under treatment with vasoactive agents, such as
topical carbonic anhydrase inhibitors, could have introduced
an additional bias that must be taken into account when
concluding about the patients’ ocular circulation. Finally, while
the waveform analyses of the other retrobulbar arteries would
have been interesting to perform, the lack of a clear visible
dicrotic notch in some of those arteries’ waveforms (such as
NPCA and TPCA) would have increased any existing bias in
differentiating the ejected from the reflected wave compo-
nents (systolic and diastolic components, respectively).

In conclusion, the authors’ data suggest that these Doppler
waveform analyses could add an extra value to ocular blood
flow studies. A shift to the right in the ophthalmic artery
waveform is identifiable even in the absence of differences in
peak systolic or end-diastolic blood flow velocities. While the
nature of this pattern change is not completely understood,
then further studies are still needed in order to better understand
what may cause such shift changes, thus providing a better
understanding of the possible underlying vascular dysfunction.

\textbf{References}

1. Kingman S. Glaucoma is the second leading cause of blindness

2. Anderson DR. Normal Tension Glaucoma Study. Collaborative
normal tension glaucoma study. \textit{Curr Opin Ophthalmo-}

3. Leskea MC, Heijl A, Hyman L, Bengtsson B, Komaroff E.
Factors for progression and glaucoma treatment: the Early
102–106.

4. Broadway DC, Drance SM. Glaucoma and vasospasm. \textit{Br J

5. Wang JJ, Mitchell P, Smith W. Is there an association between
migraine headache and open-angle glaucoma? Findings from the
Blue Mountains Eye Study. \textit{Ophthalmology.} 1997;104:
1714–1719.

