Methadone Intoxication in a Child: Toxic Encephalopathy?

ABSTRACT

Methadone is used in the treatment of opioid addiction. Acute intoxication can lead to severe consequences and can even be lethal. In several case reports and small series, a presumably toxic leukoencephalopathy is described resulting from inhalation of heroin. We present the case of a 3-year-old boy who ingested methadone accidentally. In a coma with acute obstructive hydrocephalus owing to massive cerebellar edema and supratentorial lesions, he was successfully treated with methylprednisolone and cerebrospinal fluid external drainage. To our knowledge, this is the first report of an encephalopathy associated with synthetic opioid intoxication. (J Child Neurol 2006;21:618–620; DOI 10.2310/7010.2006.00146).

Many toxic effects of opioids have been reported; a toxic leukoencephalopathy resulting from heroin inhalation has been described, although the clinical and imaging findings are variable and the physiopathology remains unknown.1

Methadone is a synthetic opioid used for decades in the treatment of opioid addiction.2 After ingestion, the effects appear within 30 minutes to 4 hours, and the average half-life is 23 to 25 hours, although central nervous system depressor effects can last longer (up to 48 hours).2 Renal excretion is largely affected by the urinary pH (clearance is lower with alkaline urine).2 Methadone has a great affinity with the mu class of opioid receptors and binds weakly to the kappa and delta receptors (a binding profile similar to that of morphine).2,3 We present one case of methadone intoxication and acute leukoencephalopathy with a predominant cerebellar lesion with total recovery.

Case Report

A 3-year-old male child was referred to our hospital in a coma. Both parents were opioid addicted and under a treatment program with methadone. This child had no relevant history other than methadone exposure in utero and neonatal withdrawal syndrome. The child was found unconscious in bed. On arrival at the emergency department, the child was in a coma with irregular breathing and low blood pressure (48/28 mm Hg). The axillary temperature was 34.7°C. He had no signs of trauma. Blood glucose was 490 mg/dL, and blood pH was 6.87 with 11 mEq/L bicarbonate (capillary blood). He was ventilated and volume expanded; bicarbonate, dopamine, and ceftriaxone were administered. After stabilization of vital signs, he was referred to our hospital’s intensive care unit. By this time, the patient reacted only to pain, bilaterally, with a slow and generalized symmetric extensor posture. His pupils were myotic. Oculocephalic reflexes were absent. Capillary blood pH was 7.56 with 23.5 mEq/L bicarbonate. The urine test for methadone was negative, but naloxone was administered owing to a high clinical suspicion. The patient responded with eye opening and a few spontaneous movements of the limbs but returned quickly to his previous neurologic state. A computed tomographic (CT) scan (5 hours after arrival at hospital) revealed an extensive bilateral and symmetric hypodensity of
The patient’s head was raised, and mannitol and dexamethasone were administered. Thirty-six hours after admission, methadone testing in the urine was positive, when the urinary pH was 5. The clinical picture remained unchanged. The repeated CT scan revealed the same findings (parapinesencephalic and prepontine cisterns and cisterna magna totally occupied by the enlarged cerebellum and brainstem) (Figure 1).

Surgical treatment of the patient’s acute hydrocephalus was undertaken with ventricular cerebrospinal fluid external drainage in the Santa Maria Hospital. The patient recovered consciousness promptly, remaining in a state of mutism and right-sided hemiplegia. In the next few days, the hemiplegia disappeared and limb and truncal ataxia became apparent, with mutism replaced by slow, low-pitched, dysarthric speech.

On the sixth day in hospital, cerebral magnetic resonance imaging (MRI) confirmed the cerebellar lesions and revealed additional bilateral lesions in the hippocampus (Figure 2). The patient was then treated with a high dosage of methylprednisolone (30 mg/kg/day) for 3 days. The ventricular catheter was removed on the eleventh day. The patient left hospital on the sixteenth day still exhibiting a residual ataxia, which resolved in the subsequent 4 weeks.

Discussion

Methadone intoxication was confirmed only after repeated testing. Overcorrection of the acidosis led to alkaline urine and negative testing for methadone. Therefore, naloxone can be used as a diagnostic and therapeutic trial. The response to naloxone was equivocal, and the patient’s CT scan revealed a prominent cerebellar lesion and acute hydrocephalus, raising additional diagnostic questions.

Severe opioid intoxication causes coma with myosis and suppression of brainstem reflexes (oculocephalic responses are usually absent). A cerebellar and brainstem structural lesion can have a very

Figure 1. A computed tomographic (CT) scan 5 hours after admission shows severe cerebellar edema, effacement of perimesencephalic cisterns, and a slightly enlarged third ventricle and temporal horns of lateral ventricles, indicating acute hydrocephalus.

Figure 2. A T2-weighted magnetic resonance image (MRI) performed on the sixth day in hospital still reveals an abnormal hyperintense signal in the cerebellar hemispheres and hippocampus, bilaterally, but more evident on the left side (arrow).
similar clinical presentation: coma with small pontine pupils and early and pronounced suppression of brainstem reflexes.

Hypoxia or ischemia would lead to very different radiologic and clinical findings, but we cannot exclude the fact that it might have had an enhancing effect on this probably toxic encephalopathy. A presumably infectious or immunologic cerebellitis has been reported with cerebellar edema—hypoactive lesions on CT or hyperintense lesions on T2-weighted MRI—but our patient had no clinical or laboratory evidence of a previous or concomitant infection.

Some reports and case series describe a toxic leukoencephalopathy in heroin inhalers. This disorder of unknown etiology affects the cerebellar white matter; lesions in the supratentorial white matter are also prominent. Reported symptoms are progressive dementia and ataxia with pyramidal signs. Nevertheless, acute encephalopathy with depressed consciousness and ataxia can also occur. Almost all patients were heroin inhalers, except one child who ingested heroin accidentally and had a reversible leukoencephalopathy with an extensive cerebellar lesion. Contamination of heroin by other toxic products was never found and seems unlikely at present. Some patients were studied with magnetic resonance spectroscopy. The magnetic resonance spectroscopic pattern suggested axonal injury without demyelination. A lactate peak raised the question of mitochondrial dysfunction. In some cases, the disease had a fatal evolution and neuropathologic examination revealed spongiform leukoencephalopathy with intramyelinic edema, an unchanged blood–brain barrier, and relative axonal and myelin sheath preservation.

Our patient ingested methadone (not a "street" drug) accidentally, and the question of contamination with other toxics was not relevant. He had an encephalopathy that was in many aspects similar to some previously reported cases of heroin leukoencephalopathy. Methadone has a pharmacologic profile similar to that of morphine, including a great affinity to mu receptors and weak binding to delta and kappa receptors. Studies on opioid receptors have led to the conclusion that the cerebellum and limbic system have the greatest density of opioid receptors, although with a variable expression of different subtypes of receptors. The cerebellum is thought to have mostly mu and, in a lesser amount, delta receptors and probably does not express kappa receptors. The role of these receptors in physiologic, therapeutic, or toxic situations is not well described. We performed EEG serially in three children who suffered from posterior reversible encephalopathy asso- ciated with tacrolimus or cyclosporine. EEG showed continuous focal rhythmic activities in the acute period. EEG findings are not well described. We performed EEG serially in three children who suffered from posterior reversible encephalopathy associated with tacrolimus or cyclosporine. EEG showed continuous focal rhythmic activities in the acute period. EEG findings normalized after the clinical manifestations had disappeared. We conclude that EEG is useful for the diagnosis and follow-up of posterior reversible encephalopathy. (J Child Neurol 2006;21: 620–623; DOI 10.2310/7010.2006.00147).

Electroencephalographic (EEG) Findings in Posterior Reversible Encephalopathy Associated With Immunosuppressants

ABSTRACT

Posterior reversible encephalopathy has been reported in patients who receive immunosuppressants. Compared with radiologic studies, electroencephalographic (EEG) findings are not well described. We performed EEG serially in three children who suffered from posterior reversible encephalopathy associated with tacrolimus or cyclosporine. EEG showed continuous focal rhythmic activities in the acute period. EEG findings normalized after the clinical manifestations had disappeared. We conclude that EEG is useful for the diagnosis and follow-up of posterior reversible encephalopathy. (J Child Neurol 2006;21: 620–623; DOI 10.2310/7010.2006.00147).

It has been reported that treatment with immunosuppressive agents induces encephalopathy in transplant patients. Magnetic resonance imaging (MRI) often shows multiple bilateral lesions in the posterior part of the cerebrum. This condition has been called "posterior reversible encephalopathy syndrome." Although clinical and radiologic findings have been well recognized, electroencephalographic (EEG) findings have not been extensively reported. We performed EEG serially in three children who suffered from posterior reversible encephalopathy associated with immunosuppressants between 1999 and 2002, and compared the findings with their clinical manifestations.